Analytic Number Theory
Instructor: Ranjan Bera
M. Math Back-Paper Exam(2022).
Maximum marks: 80

Answer the following questions.

1) If $n \geq 1$ prove that

$$
\phi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

Define von Mangoldt function. Prove that for $n \geq 1$

$$
\log n=\sum_{d \mid n} \Lambda(d)
$$

2) Find the inverse of completely multiplicative function f. Is Liouville function completely multiplicative. Find the Bell series of Euler's totient function ϕ.
3) Define "Big oh" and "Small oh". State and prove weak and strong versions of Dirichlet asymptotic formulae for the partial sums of the divisor function $d(n)$.
4) Define the Chebyshev's functions ψ and θ. Let $a_{1}<a_{2}<\cdots<a_{n}<x$ be a set of positive integers such that no a_{i} divides the product of others. Prove that $n \leq \pi(x)$.
5) Define the Dirichlet character of a finite group. Prove that there is $\phi(k)$ distinct Dirichlet characters modulo k, each of which is completely multiplicative and periodic with period k. Find the Dirichlet characters for $k=4$.
6) Define Ramanujan sum. Define induced modulus of Dirichlet character χ. Let χ be a Dirichlet character $\bmod k$ and assume that $d \mid k, d>0$. Then prove that d is an induced modulus for χ if, and only if,

$$
\chi(a)=\chi(b)
$$

whenever $(a, k)=(b, k)=1$ and $a \equiv b(\bmod 4)$
7) Define Legendre's symbol. Prove that for all n

$$
(n \mid p) \equiv n^{(p-1) / 2} \quad(\bmod p)
$$

where p is odd prime. Determine the odd primes p for which 3 is a quadratic residue and those odd primes for which 3 is a quadratic nonresidue.
8) Using the index calculus solve $x^{8} \equiv 8(\bmod 16)$. Assume that $\alpha \leq 3$, then prove that for every odd integer n there is a uniquely determine integer $b(n)$ such that

$$
n \equiv(-1)^{(n-1 / 2)} 5^{b(n)} \quad\left(\bmod 2^{\alpha}\right)
$$

with $1 \leq b(n) \leq \phi\left(2^{\alpha}\right) / 2$
9) Define Hurwitz zeta function $\xi(s, a)$. Prove that Riemann Zeta function equal to 0 for every even negative number.
10) Assume that $\sum f(n) n^{-n}$ convergent absolutely for $\sigma>\sigma_{a}$. If f is multiplicative function prove that

$$
\sum_{n=1}^{\infty} \prod_{p}\left\{1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{s}}+\cdots\right\}
$$

if $\sigma>\sigma_{a}$. Also prove that $\xi(s)=\prod_{p} \frac{1}{1-p^{-s}}$ if $\sigma>1$

